Zero-one law for directional transience of one dimensional excited random walks

Gideon Amir, Noam Berger, Tal Orenshtein

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The probability that a one dimensional excited random walk in stationary ergodic and elliptic cookie environment is transient to the right (left) is either zero or one. This solves a problem posed by Kosygina and Zerner (Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013) 105-157). As an application, a law of large numbers holds in these conditions.

Original languageEnglish
Pages (from-to)47-57
Number of pages11
JournalAnnales de l'institut Henri Poincare (B) Probability and Statistics
Volume52
Issue number1
DOIs
StatePublished - Feb 2016

Bibliographical note

Publisher Copyright:
© 2016 Association des Publications de l'Institut Henri Poincare.

Keywords

  • Cookie walk
  • Directional transience
  • Excited random walk
  • Law of large numbers
  • Limit theorem
  • Random environment
  • Recurrence
  • Zero-one law

Fingerprint

Dive into the research topics of 'Zero-one law for directional transience of one dimensional excited random walks'. Together they form a unique fingerprint.

Cite this