What You See is What You Read? Improving Text-Image Alignment Evaluation

Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran Lang, Eran Ofek, Idan Szpektor

Research output: Contribution to journalConference articlepeer-review

7 Scopus citations

Abstract

Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic text-image alignment evaluation. We first introduce SeeTRUE: a comprehensive evaluation set, spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach by finetuning multimodal pretrained models. Both methods surpass prior approaches in various text-image alignment tasks, with significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Externally publishedYes
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: 10 Dec 202316 Dec 2023

Bibliographical note

Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.

Fingerprint

Dive into the research topics of 'What You See is What You Read? Improving Text-Image Alignment Evaluation'. Together they form a unique fingerprint.

Cite this