Well-assembled nanosheets of nickel-cobalt double hydroxide flower as a reversible faradic battery-type electrode material for high-performance hybrid supercapacitor

Periyasamy Sivakumar, Loganathan Kulandaivel, Jeong Won Park, C. Justin Raj, R. Ramesh, Hyun Jung

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The design and advancement of the interconnected three-dimensional (3D) porous nanoarchitecture electrode materials with fascinating electrochemical performance are in high demand for high-performance hybrid supercapacitors (HSCs). Herein, we report a facile fabrication of 3D flower-like nickel-cobalt double hydroxides (NiCoDH) architecture via a template-free hydrothermal approach. The NiCoDH flower-like architecture is composed of self-assembling and interconnecting many thin nanosheets with thicknesses ranging from 11–16 nm. The open void space and vertically oriented nanosheets in the NiCoDH flower-like architecture could shorten the pathway for the charge and electrons transport and offer abundant electroactive sites for redox reactions to enhance the electrochemical performance of the electrode material. The flower-like NiCoDH electrode material reveals a high specific capacity (Qs) of 731 C g−1 at the current of 1 A g−1 and retains 461 C g−1 even at 20 A g−1, signifying the high rate capability of the obtained electrode material. The HSC is constructed by adopting the NiCoDH and activated carbon (AC) as the positrode and negatrode, respectively. Further, the HSC supplies a Qs of 352 C g−1, and it offers a high energy density of 58.30 Wh kg−1 at the power density of 21.09 kW kg−1 and an excellent long-term cyclic life (∼90.4% retention over 10,000 repeated GCD cycles).

Original languageEnglish
Pages (from-to)35578-35585
Number of pages8
JournalCeramics International
Volume48
Issue number23
DOIs
StatePublished - 1 Dec 2022
Externally publishedYes

Bibliographical note

Funding Information:
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea ( NRF ), South Korea, funded by the Ministry of Education (No. NRF-2016R1D1A1B01009640 ).

Publisher Copyright:
© 2022 Elsevier Ltd and Techna Group S.r.l.

Keywords

  • 2D nanosheet
  • 3D flower
  • Energy storage
  • Hybrid supercapacitor
  • Ni-Co hydroxides

Fingerprint

Dive into the research topics of 'Well-assembled nanosheets of nickel-cobalt double hydroxide flower as a reversible faradic battery-type electrode material for high-performance hybrid supercapacitor'. Together they form a unique fingerprint.

Cite this