TY - JOUR
T1 - Weighted estimates for solutions of a Sturm-Liouville equation in the space L 1(ℝ)
AU - Chernyavskaya, N. A.
AU - El-Natanov, N.
AU - Shuster, L. A.
PY - 2011/12
Y1 - 2011/12
N2 - We consider the equation -y″(x)+q(x)y(x)=f(x), x ∈ ℝ, where f ∈ L 1(ℝ), 0 ≤ q ∈ L 1 loc(ℝ), inf x∈ℝ ∫ x-a x+a q(t)dt>0 for some a>0. Under these conditions, (1) is correctly solvable in L 1(ℝ), i.e. (i) for any function f ∈ L 1(ℝ), there exists a unique solution of (1), y ∈ L 1(ℝ); (ii) there is an absolute constant c 1 ∈ (0, ∞) such that the solution of (1), y ∈ L 1(ℝ), satisfies the inequality ∥y∥ 1 ≤ c 1∥f∥ 1 for all f ∈ L 1(ℝ). In this work we strengthen the a priori inequality (1). We find minimal requirements for a given weight function θ ∈ L 1 loc(ℝ), under which the solution of (1), y ∈ L 1(ℝ), satisfies the estimate ∥θy∥ 1 ≤ c 2∥f∥ 1 for all f ∈ L 1(ℝ), where c 2 is some absolutely positive constant.
AB - We consider the equation -y″(x)+q(x)y(x)=f(x), x ∈ ℝ, where f ∈ L 1(ℝ), 0 ≤ q ∈ L 1 loc(ℝ), inf x∈ℝ ∫ x-a x+a q(t)dt>0 for some a>0. Under these conditions, (1) is correctly solvable in L 1(ℝ), i.e. (i) for any function f ∈ L 1(ℝ), there exists a unique solution of (1), y ∈ L 1(ℝ); (ii) there is an absolute constant c 1 ∈ (0, ∞) such that the solution of (1), y ∈ L 1(ℝ), satisfies the inequality ∥y∥ 1 ≤ c 1∥f∥ 1 for all f ∈ L 1(ℝ). In this work we strengthen the a priori inequality (1). We find minimal requirements for a given weight function θ ∈ L 1 loc(ℝ), under which the solution of (1), y ∈ L 1(ℝ), satisfies the estimate ∥θy∥ 1 ≤ c 2∥f∥ 1 for all f ∈ L 1(ℝ), where c 2 is some absolutely positive constant.
UR - http://www.scopus.com/inward/record.url?scp=84857263847&partnerID=8YFLogxK
U2 - 10.1017/s0308210510000600
DO - 10.1017/s0308210510000600
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84857263847
SN - 0308-2105
VL - 141
SP - 1175
EP - 1206
JO - Proceedings of the Royal Society of Edinburgh Section A: Mathematics
JF - Proceedings of the Royal Society of Edinburgh Section A: Mathematics
IS - 6
ER -