Variational inference for DOA estimation in reverberant conditions

Yosef Soussana, Sharon Gannot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations


A concurrent speaker direction of arrival (DOA) estimator in a reverberant environment is presented. The reverberation phenomenon, if not properly addressed, is known to degrade the performance of DOA estimators. In this paper, we investigate a variational Bayesian (VB) inference framework for clustering time-frequency (TF) bins to candidate angles. The received microphone signals are modelled as a sum of anechoic speech and the reverberation component. Our model relies on Gaussian prior for the speech signal and Gamma prior for the speech precision. The noise covariance matrix is modelled by a time-invariant full-rank coherence matrix multiplied by time-varying gain with Gamma prior as well. The benefits of the presented model are verified in a simulation study using measured room impulse responses.

Original languageEnglish
Title of host publicationEUSIPCO 2019 - 27th European Signal Processing Conference
PublisherEuropean Signal Processing Conference, EUSIPCO
ISBN (Electronic)9789082797039
StatePublished - Sep 2019
Event27th European Signal Processing Conference, EUSIPCO 2019 - A Coruna, Spain
Duration: 2 Sep 20196 Sep 2019

Publication series

NameEuropean Signal Processing Conference
ISSN (Print)2219-5491


Conference27th European Signal Processing Conference, EUSIPCO 2019
CityA Coruna

Bibliographical note

Publisher Copyright:
© 2019 IEEE


  • DOA estimation
  • Variational Bayes inference
  • Variational Expectation-Maximization


Dive into the research topics of 'Variational inference for DOA estimation in reverberant conditions'. Together they form a unique fingerprint.

Cite this