Abstract
Biological systems are collections of discrete molecular objects that move around and collide with each other. Cells carry out elaborate processes by precisely controlling these collisions, but developing artificial machines that can interface with and control such interactions remains a significant challenge. DNA is a natural substrate for computing and has been used to implement a diverse set of mathematical problems, logic circuits and robotics. The molecule also interfaces naturally with living systems, and different forms of DNA-based biocomputing have already been demonstrated. Here, we show that DNA origami can be used to fabricate nanoscale robots that are capable of dynamically interacting with each other in a living animal. The interactions generate logical outputs, which are relayed to switch molecular payloads on or off. As a proof of principle, we use the system to create architectures that emulate various logic gates (AND, OR, XOR, NAND, NOT, CNOT and a half adder). Following an ex vivo prototyping phase, we successfully used the DNA origami robots in living cockroaches (Blaberus discoidalis) to control a molecule that targets their cells.
Original language | English |
---|---|
Pages (from-to) | 353-357 |
Number of pages | 5 |
Journal | Nature Nanotechnology |
Volume | 9 |
Issue number | 5 |
Early online date | 6 Apr 2014 |
DOIs | |
State | Published - May 2014 |
Bibliographical note
Funding Information:The authors thank the following colleagues for their valuable advice and comments on the manuscript: A. Adamatzky, S. Revzen, D.Y. Zhang, R. Jungmann, P. Yin, A. Marblestone, E. Shapiro, A. Munitz, A. Binshtok, L. Qian, E. Winfree and G.M. Church. The authors are particularly grateful to S.M. Douglas for valuable contributions. The authors acknowledge the members of the Bachelet lab at Bar Ilan University for support, technical help and valuable discussions. This work was supported by a European Research Council Starting grant (no. 335332) to I.B., a Kamin grant from the Israeli Ministry of Industry & Commerce to I.B. and grants from the Faculty of Life Sciences and the Institute of Nanotechnology & Advanced Materials at Bar-Ilan University.
Funding
The authors thank the following colleagues for their valuable advice and comments on the manuscript: A. Adamatzky, S. Revzen, D.Y. Zhang, R. Jungmann, P. Yin, A. Marblestone, E. Shapiro, A. Munitz, A. Binshtok, L. Qian, E. Winfree and G.M. Church. The authors are particularly grateful to S.M. Douglas for valuable contributions. The authors acknowledge the members of the Bachelet lab at Bar Ilan University for support, technical help and valuable discussions. This work was supported by a European Research Council Starting grant (no. 335332) to I.B., a Kamin grant from the Israeli Ministry of Industry & Commerce to I.B. and grants from the Faculty of Life Sciences and the Institute of Nanotechnology & Advanced Materials at Bar-Ilan University.
Funders | Funder number |
---|---|
Faculty of Life Sciences | |
Institute of Nanotechnology & Advanced Materials at Bar-Ilan University | |
Israeli Ministry of Industry & Commerce | |
European Commission | 335332 |