Uncovering Implicit Gender Bias in Narratives through Commonsense Inference

Tenghao Huang, Faeze Brahman, Vered Shwartz, Snigdha Chaturvedi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Pre-trained language models learn socially harmful biases from their training corpora, and may repeat these biases when used for generation. We study gender biases associated with the protagonist in model-generated stories. Such biases may be expressed either explicitly ("women can't park") or implicitly (e.g. an unsolicited male character guides her into a parking space). We focus on implicit biases, and use a commonsense reasoning engine to uncover them. Specifically, we infer and analyze the protagonist's motivations, attributes, mental states, and implications on others. Our findings regarding implicit biases are in line with prior work that studied explicit biases, for example showing that female characters' portrayal is centered around appearance, while male figures' focus on intellect.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics, Findings of ACL
Subtitle of host publicationEMNLP 2021
EditorsMarie-Francine Moens, Xuanjing Huang, Lucia Specia, Scott Wen-Tau Yih
PublisherAssociation for Computational Linguistics (ACL)
Pages3866-3873
Number of pages8
ISBN (Electronic)9781955917100
StatePublished - 2021
Externally publishedYes
Event2021 Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021 - Punta Cana, Dominican Republic
Duration: 7 Nov 202111 Nov 2021

Publication series

NameFindings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021

Conference

Conference2021 Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021
Country/TerritoryDominican Republic
CityPunta Cana
Period7/11/2111/11/21

Bibliographical note

Publisher Copyright:
© 2021 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Uncovering Implicit Gender Bias in Narratives through Commonsense Inference'. Together they form a unique fingerprint.

Cite this