TY - JOUR
T1 - Trust as Extended Control
T2 - Human-Machine Interactions as Active Inference
AU - Schoeller, Felix
AU - Miller, Mark
AU - Salomon, Roy
AU - Friston, Karl J.
N1 - Publisher Copyright:
© Copyright © 2021 Schoeller, Miller, Salomon and Friston.
PY - 2021/10/13
Y1 - 2021/10/13
N2 - In order to interact seamlessly with robots, users must infer the causes of a robot’s behavior–and be confident about that inference (and its predictions). Hence, trust is a necessary condition for human-robot collaboration (HRC). However, and despite its crucial role, it is still largely unknown how trust emerges, develops, and supports human relationship to technological systems. In the following paper we review the literature on trust, human-robot interaction, HRC, and human interaction at large. Early models of trust suggest that it is a trade-off between benevolence and competence; while studies of human to human interaction emphasize the role of shared behavior and mutual knowledge in the gradual building of trust. We go on to introduce a model of trust as an agent’ best explanation for reliable sensory exchange with an extended motor plant or partner. This model is based on the cognitive neuroscience of active inference and suggests that, in the context of HRC, trust can be casted in terms of virtual control over an artificial agent. Interactive feedback is a necessary condition to the extension of the trustor’s perception-action cycle. This model has important implications for understanding human-robot interaction and collaboration–as it allows the traditional determinants of human trust, such as the benevolence and competence attributed to the trustee, to be defined in terms of hierarchical active inference, while vulnerability can be described in terms of information exchange and empowerment. Furthermore, this model emphasizes the role of user feedback during HRC and suggests that boredom and surprise may be used in personalized interactions as markers for under and over-reliance on the system. The description of trust as a sense of virtual control offers a crucial step toward grounding human factors in cognitive neuroscience and improving the design of human-centered technology. Furthermore, we examine the role of shared behavior in the genesis of trust, especially in the context of dyadic collaboration, suggesting important consequences for the acceptability and design of human-robot collaborative systems.
AB - In order to interact seamlessly with robots, users must infer the causes of a robot’s behavior–and be confident about that inference (and its predictions). Hence, trust is a necessary condition for human-robot collaboration (HRC). However, and despite its crucial role, it is still largely unknown how trust emerges, develops, and supports human relationship to technological systems. In the following paper we review the literature on trust, human-robot interaction, HRC, and human interaction at large. Early models of trust suggest that it is a trade-off between benevolence and competence; while studies of human to human interaction emphasize the role of shared behavior and mutual knowledge in the gradual building of trust. We go on to introduce a model of trust as an agent’ best explanation for reliable sensory exchange with an extended motor plant or partner. This model is based on the cognitive neuroscience of active inference and suggests that, in the context of HRC, trust can be casted in terms of virtual control over an artificial agent. Interactive feedback is a necessary condition to the extension of the trustor’s perception-action cycle. This model has important implications for understanding human-robot interaction and collaboration–as it allows the traditional determinants of human trust, such as the benevolence and competence attributed to the trustee, to be defined in terms of hierarchical active inference, while vulnerability can be described in terms of information exchange and empowerment. Furthermore, this model emphasizes the role of user feedback during HRC and suggests that boredom and surprise may be used in personalized interactions as markers for under and over-reliance on the system. The description of trust as a sense of virtual control offers a crucial step toward grounding human factors in cognitive neuroscience and improving the design of human-centered technology. Furthermore, we examine the role of shared behavior in the genesis of trust, especially in the context of dyadic collaboration, suggesting important consequences for the acceptability and design of human-robot collaborative systems.
KW - active inference
KW - cobotics
KW - control
KW - extended mind hypothesis
KW - human computer interaction
KW - human-robot interaction
KW - trust
UR - http://www.scopus.com/inward/record.url?scp=85118135335&partnerID=8YFLogxK
U2 - 10.3389/fnsys.2021.669810
DO - 10.3389/fnsys.2021.669810
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34720895
AN - SCOPUS:85118135335
SN - 1662-5137
VL - 15
JO - Frontiers in Systems Neuroscience
JF - Frontiers in Systems Neuroscience
M1 - 669810
ER -