Abstract
Transfer learning is a popular strategy to overcome the difficulties posed by limited training data. It uses the parameters of the source task to initialize the parameters of the target task. In this study, we cast transfer learning as a regularization procedure. In addition to initialization, we incorporate the source task parameters into the cost function used to train the target task. We regularize the learned parameters by penalizing them if they deviate too much from their initial values. We demonstrate the power of the proposed transfer learning scheme on the task of COVID-19 opacity https://www.overleaf.com/projectsegmentation. Specifically, we show that it can improve the segmentation of coronavirus lesions in chest CT scans.
Original language | English |
---|---|
Title of host publication | 29th European Signal Processing Conference, EUSIPCO 2021 - Proceedings |
Publisher | European Signal Processing Conference, EUSIPCO |
Pages | 985-989 |
Number of pages | 5 |
ISBN (Electronic) | 9789082797060 |
DOIs | |
State | Published - 2021 |
Event | 29th European Signal Processing Conference, EUSIPCO 2021 - Dublin, Ireland Duration: 23 Aug 2021 → 27 Aug 2021 |
Publication series
Name | European Signal Processing Conference |
---|---|
Volume | 2021-August |
ISSN (Print) | 2219-5491 |
Conference
Conference | 29th European Signal Processing Conference, EUSIPCO 2021 |
---|---|
Country/Territory | Ireland |
City | Dublin |
Period | 23/08/21 → 27/08/21 |
Bibliographical note
Publisher Copyright:© 2021 European Signal Processing Conference. All rights reserved.
Funding
The research was partially supported by the Israeli Ministry of Science & Technology.
Funders | Funder number |
---|---|
Ministry of science and technology, Israel |
Keywords
- Covid-19
- Regularization
- Segmentation
- Transfer learning