Towards optimal set-disjointness and set-intersection data structures

Tsvi Kopelowitz, Virginia Vassilevska Williams

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

In the online set-disjointness problem the goal is to preprocess a family of sets F, so that given two sets S, S0 ∈ F, one can quickly establish whether the two sets are disjoint or not. If N = PS∈F |S|, then let Np be the preprocessing time and let Nq be the query time. The most efficient known combinatorial algorithm is a generalization of an algorithm by Cohen and Porat [TCS'10] which has a tradeoff curve of p + q = 2. Kopelowitz, Pettie, and Porat [SODA'16] showed that, based on the 3SUM hypothesis, there is a conditional lower bound curve of p + 2q ≥ 2. Thus, the current state-of-the-art exhibits a large gap. The online set-intersection problem is the reporting version of the online set-disjointness problem, and given a query, the goal is to report all of the elements in the intersection. When considering algorithms with Np preprocessing time and Nq +O(op) query time, where op is the size of the output, the combinatorial algorithm for online set-disjointess can be extended to solve online set-intersection with a tradeoff curve of p + q = 2. Kopelowitz, Pettie, and Porat [SODA'16] showed that, assuming the 3SUM hypothesis, for 0 ≤ q ≤ 2/3 this curve is tight. However, for 2/3 ≤ q < 1 there is no known lower bound. In this paper we close both gaps by showing the following: For online set-disjointness we design an algorithm whose runtime, assuming ω = 2 (where ω is the exponent in the fastest matrix multiplication algorithm), matches the lower bound curve of Kopelowitz et al., for q ≤ 1/3. We then complement the new algorithm by a matching conditional lower bound for q > 1/3 which is based on a natural hypothesis on the time required to detect a triangle in an unbalanced tripartite graph. Remarkably, even if ω > 2, the algorithm matches the lower bound curve of Kopelowitz et al. for p ≥ 1.73688 and q ≤ 0.13156. For set-intersection, we prove a conditional lower bound that matches the combinatorial upper bound curve for q ≥ 1/2 which is based on a hypothesis on the time required to enumerate all triangles in an unbalanced tripartite graph. Finally, we design algorithms for detecting and enumerating triangles in unbalanced tripartite graphs which match the lower bounds of the corresponding hypotheses, assuming ω = 2.

Original languageEnglish
Title of host publication47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
EditorsArtur Czumaj, Anuj Dawar, Emanuela Merelli
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771382
DOIs
StatePublished - 1 Jun 2020
Event47th International Colloquium on Automata, Languages, and Programming, ICALP 2020 - Virtual, Online, Germany
Duration: 8 Jul 202011 Jul 2020

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume168
ISSN (Print)1868-8969

Conference

Conference47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
Country/TerritoryGermany
CityVirtual, Online
Period8/07/2011/07/20

Bibliographical note

Publisher Copyright:
© Tsvi Kopelowitz and Virginia Vassilevska Williams; licensed under Creative Commons License CC-BY 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).

Funding

Funding Tsvi Kopelowitz: Tsvi Kopelowitz is supported by ISF grant no. 1926/19, and by BSF grant no. 2018364. Virginia Vassilevska Williams: Virginia Vassilevska Williams is supported by an NSF CAREER Award, NSF Grants CCF-1528078, CCF-1514339 and CCF-1909429, a BSF Grant BSF:2012338, a Google Research Fellowship and a Sloan Research Fellowship.

FundersFunder number
National Science FoundationCCF-1514339, CCF-1909429, CCF-1528078, BSF:2012338
Google
Israel Science Foundation2018364, 1926/19

    Keywords

    • Fast matrix multiplication
    • Fine-grained complexity
    • Set-disjointness data structures
    • Triangle detection
    • Triangle enumeration

    Fingerprint

    Dive into the research topics of 'Towards optimal set-disjointness and set-intersection data structures'. Together they form a unique fingerprint.

    Cite this