Topology-driven surface patterning of liquid spheres

Subhomoy Das, Alexander V. Butenko, Yitzhak Mastai, Moshe Deutsch, Eli Sloutskin

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Surfaces of classical spherical liquid droplets are isotropic, promoting the random distribution of surface-adsorbed molecules1. Here we demonstrate a counterintuitive temperature-controlled self-assembly of well-defined and highly ordered patterns of surface-adsorbed fluorescent molecules on the surfaces of water-suspended spherical oil droplets. These patterns are induced by precisely self-positioned, topology-dictated structural defects in a crystalline monolayer covering these droplets’ surfaces over a wide temperature range. We elucidate the pattern formation mechanism, visualize the defects’ positions and map the stress fields within the surface crystal. The observed phenomena provide insights into the interfacial freezing effect on curved surfaces, enable precise positioning of functional ligands on droplets for their self-assembly into higher-hierarchy structures2–6 and may also play an important role in vital protein positioning on cell membranes7 and morphogenesis8–12.

Original languageEnglish
Pages (from-to)1177-1180
Number of pages4
JournalNature Physics
Volume18
Issue number10
DOIs
StatePublished - Oct 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Topology-driven surface patterning of liquid spheres'. Together they form a unique fingerprint.

Cite this