Time-driven superoscillations with negative refraction

M. Dubois, E. Bossy, S. Enoch, S. Guenneau, G. Lerosey, P. Sebbah

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The flat-lens concept based on negative refraction proposed by Veselago in 1968 has been mostly investigated in the monochromatic regime. It was recently recognized that time development of the superlensing effect discovered in 2000 by Pendry is yet to be assessed and may spring surprises: Time-dependent illumination could improve the spatial resolution of the focusing. We investigate dynamics of flexural wave focusing by a 45°-tilted square lattice of circular holes drilled in a duralumin plate. Time-resolved experiments reveal that the focused image shrinks with time below the diffraction limit, with a lateral resolution increasing from 0.8λ to 0.35λ, whereas focusing under harmonic excitation remains diffraction limited. Modal analysis reveals the role in pulse reconstruction of radiating lens resonances, which repeatedly self-synchronize at the focal spot to shape a superoscillating field.

Original languageEnglish
Article number013902
JournalPhysical Review Letters
Volume114
Issue number1
DOIs
StatePublished - 9 Jan 2015

Bibliographical note

Publisher Copyright:
© 2015 American Physical Society.

Funding

FundersFunder number
Agence Nationale de la Recherche

    Fingerprint

    Dive into the research topics of 'Time-driven superoscillations with negative refraction'. Together they form a unique fingerprint.

    Cite this