Abstract
Opto-electronic oscillators are sources of microwave-frequency tones that may reach very low noise levels. Much effort is being dedicated to the realization of oscillators based on photonic integrated devices. In this work, we propose and demonstrate a thermo-elastic opto-electronic oscillator at 2.213 GHz frequency based on a standard silicon-photonic integrated circuit. A microwave-frequency electrical signal modulates an optical pump wave carrier. The modulated waveform launches surface acoustic waves in a silicon-on-insulator substrate, through absorption in a metallic grating and thermo-elastic actuation. The waveform is reconverted to the optical domain through photoelastic modulation of an optical probe wave carrier in a standard racetrack resonator waveguide. Both the thermo-elastic actuation and the photoelastic modulation are radio-frequency selective. The output probe wave is detected, and the receiver voltage is amplified and fed back to modulate the optical pump input. Sufficient gain drives the loop into oscillations. The oscillator does not involve piezoelectricity and can be realized on any substrate. Long acoustic delays may be implemented in compact devices. The frequency of operation is scalable to tens of GHz. The principle may be useful in integrated microwave-photonic signal processing and in the elastic analysis of surfaces and thin layers.
Original language | English |
---|---|
Pages (from-to) | 684-697 |
Number of pages | 14 |
Journal | Optics Express |
Volume | 31 |
Issue number | 1 |
DOIs | |
State | Published - 2 Jan 2023 |
Bibliographical note
Publisher Copyright:© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
Funding
Israel Innovation Authority (MAGNETON 68966); H2020 European Research Council (SAW-SBS 101001069).
Funders | Funder number |
---|---|
Israel Innovation Authority | MAGNETON 68966 |
H2020 European Research Council | SAW-SBS 101001069 |