Thermal emission from gamma-ray bursts

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations


In recent years, there are increasing evidence for a thermal emission component that accompanies the overall non-thermal spectra of the prompt emission phase in GRBs. Both the temperature and flux of the thermal emission show a well defined temporal behaviour, a broken power law in time. The temperature is nearly constant during the first few seconds, afterwards it decays with power law index α∼0.7. The thermal flux also decays at late times as a power law with index β∼2.1. This behaviour is very ubiquitous, and was observed in a sample currently containing 32 BATSE bursts. These results are naturally explained by considering emission from the photosphere. The photosphere of a relativistically expanding plasma wind strongly depends on the angle to the line of sight, θ. As a result, thermal emission can be seen after tens of seconds. By introducing probability density function P(r,θ) of a thermal photon to escape the plasma at radius r and angle θ, the late time behaviour of the flux can be reproduced analytically. During the propagation below the photosphere, thermal photons lose energy as a result of the slight misalignment of the scattering electrons velocity vectors, which leads to photon comoving energy decay ε′(r)∝r-2/3. This in turn can explain the decay of the temperature observed at late times. Finally, I show that understanding the thermal emission is essential in understanding the high energy, non-thermal spectra. Moreover, thermal emission can be used to directly measure the Lorentz factor of the flow and the initial jet radius.

Original languageEnglish
Title of host publication2008 Nanjing Gamma-Ray Burst Conference
Number of pages6
StatePublished - 2008
Externally publishedYes
Event2008 Nanjing Gamma-Ray Burst Conference - Nanjing, China
Duration: 23 Jun 200827 Jun 2008

Publication series

NameAIP Conference Proceedings
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616


Conference2008 Nanjing Gamma-Ray Burst Conference


  • Gamma rays:bursts
  • Plasmas
  • Radiation mechanism:non-thermal
  • Radiation mechanism:thermal
  • Scattering


Dive into the research topics of 'Thermal emission from gamma-ray bursts'. Together they form a unique fingerprint.

Cite this