Abstract
A TV channel has a single advertisement break of duration h and a convex continuous function f:[0,h]→R+ representing the TV rating points within the advertisement break. Given n TV advertisements of different durations pj that sum up to h, and willingness to pay coefficients wj, the objective is to schedule them on the TV break in order to maximize the total revenue of the TV channel ∑jwj∫cj-pjcjf(t)dt, where [ cj- pj, cj) is the broadcast time interval of TV advertisement j. We show that this problem is NP-hard and propose a fully polynomial time approximation scheme, using a special dominance property of an optimal schedule and the technique of K-approximation sets and functions introduced by Halman et al. (Math Oper Res 34:674–685, 2009).
Original language | English |
---|---|
Pages (from-to) | 81-94 |
Number of pages | 14 |
Journal | Optimization Letters |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - 8 Feb 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Funding
The authors are grateful for partial support from the following sources: FONDECYT Grant 11140566 (F. Díaz-Núñez and Ó. C. Vásquez), Universidad de Santiago, Proyecto DICYT 061817VP (Ó. C. Vásquez) and Israel Science Foundation Grant 399/17 (N. Halman). Acknowledgements The authors are grateful for partial support from the following sources: FONDECYT Grant 11140566 (F. Díaz-Núñez and Ó. C. Vásquez), Universidad de Santiago, Proyecto DICYT 061817VP (Ó. C. Vásquez) and Israel Science Foundation Grant 399/17 (N. Halman).
Funders | Funder number |
---|---|
Universidad de Santiago | |
Fondo Nacional de Desarrollo Científico y Tecnológico | 11140566 |
Israel Science Foundation | 399/17 |
Keywords
- Dynamic programming
- Fully polynomial time approximation scheme
- K-approximation sets and functions
- Scheduling
- TV rating points