The theta period of a Cuspidal Automorphic Representation of GL(n)

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Let E(⋯) be an Eisenstein series corresponding to an automorphic cuspidal representation τ of GLn(A)$, induced to a representation of SO2n+1(A)$ through the Siegel parabolic subgroup. The presence of a pole of E at 12, or the nonvanishing of the residue E1/2, is determined by the presence of a pole of the partial symmetric square L-function at s=1. We define a co-period integral of E, involving the integration of E1/2 against a pair of automorphic forms in the space of the small representation of Bump, Friedberg, and Ginzburg. We compute the co-period and relate it to a "theta period" integral of τ - an integral of a cusp form against two theta functions corresponding to the exceptional representation of Kazhdan and Patterson.

Original languageEnglish
Pages (from-to)2168-2209
Number of pages42
JournalInternational Mathematics Research Notices
Volume2015
Issue number8
DOIs
StatePublished - 2015
Externally publishedYes

Bibliographical note

Funding Information:
This work was supported in part by the Israel Science Foundation—Centers of Excellence (grant

Publisher Copyright:
© 2014 © The Author(s) 2014.

Fingerprint

Dive into the research topics of 'The theta period of a Cuspidal Automorphic Representation of GL(n)'. Together they form a unique fingerprint.

Cite this