The projectron: A bounded kernel-based perceptron

Francesco Orabona, Joseph Keshet, Barbara Caputo

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

We present a discriminative online algorithm with a bounded memory growth, which is based on the kernel-based Perception. Generally, the required memory of the kernel-based Perceptron for storing the online hypothesis is not bounded. Previous work has been focused on discarding part of the instances in order to keep the memory bounded. In the proposed algorithm the instances are not discarded, but projected onto the space spanned by the previous online hypothesis. We derive a relative mistake bound and compare our algorithm both analytically and empirically to the state-of-the-art Forgetron algorithm (Dekel et al, 2007). The first variant of our algorithm, called Projectron, outperforms the Forgetron. The second variant, called Projectron++, outperforms even the Perceptron. Copyright 2008 by the author(s)/owner(s).
Original languageEnglish
JournalProceedings of the 25th International Conference on Machine Learning
StatePublished - 26 Nov 2008

Fingerprint

Dive into the research topics of 'The projectron: A bounded kernel-based perceptron'. Together they form a unique fingerprint.

Cite this