Abstract
The mammalian circadian system consists of a central clock in the brain that synchronizes clocks in the peripheral tissues. Although the hierarchy between central and peripheral clocks is established, little is known regarding the specificity and functional organization of peripheral clocks. Here, we employ altered feeding paradigms in conjunction with liver-clock mutant mice to map disparities and interactions between peripheral rhythms. We find that peripheral clocks largely differ in their responses to feeding time. Disruption of the liver-clock, despite its prominent role in nutrient processing, does not affect the rhythmicity of clocks in other peripheral tissues. Yet, unexpectedly, liver-clock disruption strongly modulates the transcriptional rhythmicity of peripheral tissues, primarily on daytime feeding. Concomitantly, liver-clock mutant mice exhibit impaired glucose and lipid homeostasis, which are aggravated by daytime feeding. Overall, our findings suggest that, upon nutrient challenge, the liver-clock buffers the effect of feeding-related signals on rhythmicity of peripheral tissues, irrespective of their clocks.
Original language | English |
---|---|
Pages (from-to) | 829-842 |
Number of pages | 14 |
Journal | Nature Metabolism |
Volume | 3 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
Funding
We thank all the members of the Asher lab for their comments on the manuscript. We thank L. Flur and E. Elinav for their aid with plasma measurements and Y. Kuperman for her assistance with the metabolic cages. G.A. is supported by the European Research Council (ERC-2017 CIRCOMMUNICATION 770869), Abisch-Frenkel Foundation for the Promotion of Life Sciences, Adelis Foundation and Susan and Michael Stern. E.S. received a Martin Kushner Schnur and Armando and Maria Jinich postdoctoral fellowship for Mexican citizens.
Funders | Funder number |
---|---|
Abisch–Frenkel Foundation for the Promotion of Life Sciences | |
Achelis Foundation | |
FP7 Ideas: European Research Council | ERC-2017 CIRCOMMUNICATION 770869 |
European Commission |