Abstract
We consider the one-dimensional John-Nirenberg inequality:|{x∈I0:|f(x)-fI0|>α}|≤C1|I0|exp(-C2f*α). A. Korenovskii found that the sharp C2 here is C2=2/e. It is shown in this paper that if C2=2/e, then the best possible C1 is C1=12e4/e.
Original language | English |
---|---|
Pages (from-to) | 463-466 |
Number of pages | 4 |
Journal | Comptes Rendus Mathematique |
Volume | 351 |
Issue number | 11-12 |
DOIs | |
State | Published - Jun 2013 |