Abstract
This study explores the effect of doping density on the performance of split-well resonant-phonon (SWRP) Terahertz Quantum Cascade Lasers (THz QCLs) through non-equilibrium Green's functions (NEGF) analysis. Experimental research showed that increasing the doping concentration in these designs led to better results compared to the split-well direct-phonon (SWDP) design, which has a larger overlap between its active laser states and the doping profile. We also found that electron-electron (e-e) scattering is a major factor in performance limitation. By identifying key scattering mechanisms, we propose optimization strategies for doping profiles and material quality to enhance operational temperatures. This research offers insights into overcoming current limitations in THz QCLs, setting a foundation for future technological advancements.
Original language | English |
---|---|
Title of host publication | 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 |
Publisher | IEEE Computer Society |
ISBN (Electronic) | 9798350370324 |
DOIs | |
State | Published - 2024 |
Event | 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 - Perth, Australia Duration: 1 Sep 2024 → 6 Sep 2024 |
Publication series
Name | International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz |
---|---|
ISSN (Print) | 2162-2027 |
ISSN (Electronic) | 2162-2035 |
Conference
Conference | 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 |
---|---|
Country/Territory | Australia |
City | Perth |
Period | 1/09/24 → 6/09/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- NEGF
- THz QCLs
- doping density
- e-e scattering