The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

Milena Pavlović, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L.M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung GundersenIngrid Hobæk Haff, Eivind Hovig, Ping Han Hsieh, Günter Klambauer, Marieke L. Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A. Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M. Sollid, Dmytro Titov, Cédric R. Weber, Michael Widrich, Gur Yaari, Victor Greiff, Geir Kjetil Sandve

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

Original languageEnglish
Pages (from-to)936-944
Number of pages9
JournalNature Machine Intelligence
Volume3
Issue number11
DOIs
StatePublished - Nov 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.

Funding

We acknowledge generous support by The Leona M. and Harry B. Helmsley Charitable Trust (grant number 2019PG-T1D011, to V.G. and T.M.B.), the UiO World-Leading Research Community (to V.G. and L.M.S.), the UiO:LifeScience Convergence Environment Immunolingo (to V.G. and G.K.S.), EU Horizon 2020 iReceptorplus (grant number 825821, to V.G. and L.M.S.), a Research Council of Norway FRIPRO project (grant number 300740, to V.G.), a Research Council of Norway IKTPLUSS project (grant number 311341, to V.G. and G.K.S.), the National Institutes of Health (grant numbers P01 AI042288 and HIRN UG3 DK122638 to T.M.B.) and Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen Coeliac Disease Research Centre, to L.M.S. and G.K.S.). We acknowledge support from ELIXIR Norway in recognizing immuneML as a national node service.

FundersFunder number
EU Horizon 2020 iReceptorplus825821
K.G. Jebsen Coeliac Disease Research Centre
LifeScience Convergence Environment Immunolingo
National Institutes of HealthP01 AI042288, HIRN UG3 DK122638
Leona M. and Harry B. Helmsley Charitable Trust2019PG-T1D011
Stiftelsen Kristian Gerhard Jebsen
Norges Forskningsråd300740, 311341

    Fingerprint

    Dive into the research topics of 'The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires'. Together they form a unique fingerprint.

    Cite this