"The genome of the kinetoplastid parasite, Leishmania major

A.C Ivens, C.S Peacock, E.A Worthey, L Murphy, G Aggarwal, M Berriman, E Sisk, M.A Rajandream, E Adlem, R Aert, A Anupama, Zina Apostolou, Philip Attipoe, Nathalie Bason, Christopher Bauser, Alfred Beck, Stephen M. Beverley, Gabriella Bianchettin, Katja Borzym, Gordana BotheCarlo V. Bruschi, Matt Collins, Eithon Cadag, Laura Ciarloni, ., S. Michaeli, .

Research output: Contribution to journalArticlepeer-review

Abstract

Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II–directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.
Original languageAmerican English
Pages (from-to)436-442
JournalScience
Volume309
Issue number5733
StatePublished - 2005

Fingerprint

Dive into the research topics of '"The genome of the kinetoplastid parasite, Leishmania major'. Together they form a unique fingerprint.

Cite this