TY - JOUR
T1 - The equivariant universality and couniversality of the Cantor cube
AU - Megrelishvili, Michael G.
AU - Scarr, Tzvi
PY - 2001
Y1 - 2001
N2 - Let (G, X, α) be a G-space, where G is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and X is a zero-dimensional compact metrizable space. Let (H ({0,1} א0), {0,1} א0,T) be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding φ : G (Rightwards arrow with hook) H({0,1} א0); (2) there exists an embedding ψ: X ¬ {0,1} א0, equivariant with respect to φ, such that ψ (X) is an equivariant retract of {0,1}א0 with respect to φ and ψ.
AB - Let (G, X, α) be a G-space, where G is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and X is a zero-dimensional compact metrizable space. Let (H ({0,1} א0), {0,1} א0,T) be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding φ : G (Rightwards arrow with hook) H({0,1} א0); (2) there exists an embedding ψ: X ¬ {0,1} א0, equivariant with respect to φ, such that ψ (X) is an equivariant retract of {0,1}א0 with respect to φ and ψ.
KW - Cantor cube
KW - G-compactification
KW - Non-Archi-medean group
KW - Universal space
UR - http://www.scopus.com/inward/record.url?scp=0011685096&partnerID=8YFLogxK
U2 - 10.4064/fm167-3-4
DO - 10.4064/fm167-3-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0011685096
SN - 0016-2736
VL - 167
SP - 269
EP - 275
JO - Fundamenta Mathematicae
JF - Fundamenta Mathematicae
IS - 3
ER -