The Effect of Chlorides on the Performance of DME/Mg[B(HFIP)4]2 Solutions for Rechargeable Mg Batteries

Ben Dlugatch, Janina Drews, Ran Attias, Bar Gavriel, Adar Ambar, Timo Danner, Arnulf Latz, Doron Aurbach

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

One of the major issues in developing electrolyte solutions for rechargeable magnesium batteries is understanding the positive effect of chloride anions on Mg deposition-dissolution processes on the anode side, as well as intercalation-deintercalation of Mg2+ ions on the cathode side. Our previous results suggested that Cl ions are adsorbed on the surface of Mg anodes and Chevrel phase MgxMo6S8 cathodes. This creates a surface add-layer that reduces the activation energy for the interfacial Mg ions transportation and related charge transfer, as well as promotes the transport of Mg2+ from the solution phase to the Mg anode surface and into the cathodes’ host materials. Here, this work further examines the effect of adding chlorides to the state-of-the-art Mg[B(HFIP)4]2/DME electrolyte solution, specifically focusing on reversible magnesium deposition, as well as the performance of Mg cells with benchmark Chevrel phase cathodes. It was observed that the presence of chlorides in these solutions facilitates both Mg deposition, and Mg2+ ions intercalation, whereby this effect is more pronounced as the purity level of the solution is lowered.

Original languageEnglish
Article number090542
JournalJournal of the Electrochemical Society
Volume170
Issue number9
DOIs
StatePublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

Fingerprint

Dive into the research topics of 'The Effect of Chlorides on the Performance of DME/Mg[B(HFIP)4]2 Solutions for Rechargeable Mg Batteries'. Together they form a unique fingerprint.

Cite this