The distant-2 chromatic number of random proximity and random geometric graphs

Josep Díaz, Zvi Lotker, Maria Serna

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of random graphs we show that the distant-2-chromatic number is Θ (log n) with high probability. The result on random geometric graphs is extended to the random sector graphs defined in [J. Díaz, J. Petit, M. Serna. A random graph model for optical networks of sensors, IEEE Transactions on Mobile Computing 2 (2003) 143-154].

Original languageEnglish
Pages (from-to)144-148
Number of pages5
JournalInformation Processing Letters
Volume106
Issue number4
DOIs
StatePublished - 16 May 2008
Externally publishedYes

Bibliographical note

Funding Information:
✩ Partially supported by the FET pro-actives Integrated Project 15964 (AEOLUS) and by the Spanish CICYT projects TIN2005-09198-C02-02 (ASCE) and TIN2005-25859-E. * Corresponding author. E-mail addresses: [email protected] (J. Díaz), [email protected] (Z. Lotker), [email protected] (M. Serna). 1 Partially supported by the Distinció per a la Recerca de la Gener-alitat de Catalunya.

Funding

✩ Partially supported by the FET pro-actives Integrated Project 15964 (AEOLUS) and by the Spanish CICYT projects TIN2005-09198-C02-02 (ASCE) and TIN2005-25859-E. * Corresponding author. E-mail addresses: [email protected] (J. Díaz), [email protected] (Z. Lotker), [email protected] (M. Serna). 1 Partially supported by the Distinció per a la Recerca de la Gener-alitat de Catalunya.

FundersFunder number
Gener-alitat de Catalunya
Comisión Interministerial de Ciencia y TecnologíaTIN2005-09198-C02-02, TIN2005-25859-E

    Keywords

    • Coloring
    • Combinatorial problems
    • Distant-2 coloring
    • Graph algorithms
    • Random graphs

    Fingerprint

    Dive into the research topics of 'The distant-2 chromatic number of random proximity and random geometric graphs'. Together they form a unique fingerprint.

    Cite this