Abstract
We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of random graphs we show that the distant-2-chromatic number is Θ (log n) with high probability. The result on random geometric graphs is extended to the random sector graphs defined in [J. Díaz, J. Petit, M. Serna. A random graph model for optical networks of sensors, IEEE Transactions on Mobile Computing 2 (2003) 143-154].
Original language | English |
---|---|
Pages (from-to) | 144-148 |
Number of pages | 5 |
Journal | Information Processing Letters |
Volume | 106 |
Issue number | 4 |
DOIs | |
State | Published - 16 May 2008 |
Externally published | Yes |
Bibliographical note
Funding Information:✩ Partially supported by the FET pro-actives Integrated Project 15964 (AEOLUS) and by the Spanish CICYT projects TIN2005-09198-C02-02 (ASCE) and TIN2005-25859-E. * Corresponding author. E-mail addresses: [email protected] (J. Díaz), [email protected] (Z. Lotker), [email protected] (M. Serna). 1 Partially supported by the Distinció per a la Recerca de la Gener-alitat de Catalunya.
Funding
✩ Partially supported by the FET pro-actives Integrated Project 15964 (AEOLUS) and by the Spanish CICYT projects TIN2005-09198-C02-02 (ASCE) and TIN2005-25859-E. * Corresponding author. E-mail addresses: [email protected] (J. Díaz), [email protected] (Z. Lotker), [email protected] (M. Serna). 1 Partially supported by the Distinció per a la Recerca de la Gener-alitat de Catalunya.
Funders | Funder number |
---|---|
Gener-alitat de Catalunya | |
Comisión Interministerial de Ciencia y Tecnología | TIN2005-09198-C02-02, TIN2005-25859-E |
Keywords
- Coloring
- Combinatorial problems
- Distant-2 coloring
- Graph algorithms
- Random graphs