The Contribution of Real-Time Artificial Intelligence Segmentation in Maxillofacial Trauma Emergencies

Amjad Shhadeh, Shadi Daoud, Idan Redenski, Daniel Oren, Adeeb Zoabi, Fares Kablan, Samer Srouji

Research output: Contribution to journalArticlepeer-review

Abstract

Background/Objectives: Maxillofacial trauma poses significant challenges in emergency medicine, requiring rapid interventions to minimize morbidity and mortality. Traditional segmentation methods are time-consuming and error-prone, particularly in high-pressure settings. Real-time artificial intelligence (AI) segmentation offers a transformative solution to streamline workflows and enhance clinical decision-making. This study evaluated the potential of real-time AI segmentation to improve diagnostic efficiency and support decision-making in maxillofacial trauma emergencies. Methods: This study evaluated 53 trauma patients with moderate to severe maxillofacial injuries treated over 16 months at Galilee Medical Center. AI-assisted segmentation using Materialise Mimics Viewer and Romexis Smart Tool was compared to semi-automated methods in terms of time and accuracy. The clinical impact of AI on diagnosis and treatment planning was also assessed. Results: AI segmentation was significantly faster than semi-automated methods (9.87 vs. 63.38 min) with comparable accuracy (DSC: 0.92–0.93 for AI; 0.95 for semi-automated). AI tools provided rapid 3D visualization of key structures, enabling faster decisions for airway management, fracture assessment, and foreign body localization. Specific trauma cases illustrate the potential of real-time AI segmentation to enhance the efficiency of diagnosis, treatment planning, and overall management of maxillofacial emergencies. The highest clinical benefit was observed in complex cases, such as orbital injuries or combined mandible and midface fractures. Conclusions: Real-time AI segmentation has the potential to enhance efficiency and clinical utility in managing maxillofacial trauma by providing precise, actionable data in time-sensitive scenarios. However, the expertise of oral and maxillofacial surgeons remains critical, with AI serving as a complementary tool to aid, rather than replace, clinical decision-making.

Original languageEnglish
Article number984
JournalDiagnostics
Volume15
Issue number8
DOIs
StatePublished - 12 Apr 2025

Bibliographical note

Publisher Copyright:
© 2025 by the authors.

Keywords

  • AI in clinical decision support
  • AI-based diagnostic imaging
  • AI-supported treatment planning
  • artificial intelligence
  • auto-segmentation
  • emergency medicine
  • maxillofacial trauma
  • real-time imaging

Fingerprint

Dive into the research topics of 'The Contribution of Real-Time Artificial Intelligence Segmentation in Maxillofacial Trauma Emergencies'. Together they form a unique fingerprint.

Cite this