Abstract
This paper studies the interaction of automata of size m. We characterise statistical properties satisfied by random plays generated by a correlated pair of automata with m states each. We show that in some respect the pair of automata can be identified with a more complex automaton of size comparable to (Formula presented.). We investigate implications of these results on the correlated min–max value of repeated games played by automata.
Original language | English |
---|---|
Pages (from-to) | 461-496 |
Number of pages | 36 |
Journal | International Journal of Game Theory |
Volume | 45 |
Issue number | 1-2 |
DOIs | |
State | Published - 1 Mar 2016 |
Bibliographical note
Publisher Copyright:© 2015, Springer-Verlag Berlin Heidelberg.
Funding
O. Gossner acknowledges financial support from Investissements d’Avenir (ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047). P. Hernández acknowledges financial support from the Spanish Economy and Competitiveness Ministry (ECO2013-46550-R) and Generalitat Valenciana (PROMETEOII/2014/054).
Funders | Funder number |
---|---|
Investissements d’avenir | ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047 |
Horizon 2020 Framework Programme | 662725 |
Ministerio de Economía y Competitividad | ECO2013-46550-R |
Generalitat Valenciana | PROMETEOII/2014/054 |
Keywords
- Automata
- Bounded memory
- Complexity
- De Bruijn sequences