The complexity of interacting automata

Olivier Gossner, Penélope Hernández, Ron Peretz

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This paper studies the interaction of automata of size m. We characterise statistical properties satisfied by random plays generated by a correlated pair of automata with m states each. We show that in some respect the pair of automata can be identified with a more complex automaton of size comparable to (Formula presented.). We investigate implications of these results on the correlated min–max value of repeated games played by automata.

Original languageEnglish
Pages (from-to)461-496
Number of pages36
JournalInternational Journal of Game Theory
Volume45
Issue number1-2
DOIs
StatePublished - 1 Mar 2016

Bibliographical note

Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.

Funding

O. Gossner acknowledges financial support from Investissements d’Avenir (ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047). P. Hernández acknowledges financial support from the Spanish Economy and Competitiveness Ministry (ECO2013-46550-R) and Generalitat Valenciana (PROMETEOII/2014/054).

FundersFunder number
Investissements d’avenirANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047
Horizon 2020 Framework Programme662725
Ministerio de Economía y CompetitividadECO2013-46550-R
Generalitat ValencianaPROMETEOII/2014/054

    Keywords

    • Automata
    • Bounded memory
    • Complexity
    • De Bruijn sequences

    Fingerprint

    Dive into the research topics of 'The complexity of interacting automata'. Together they form a unique fingerprint.

    Cite this