The Bias Amplification Paradox in Text-to-Image Generation

Preethi Seshadri, Sameer Singh, Yanai Elazar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Bias amplification is a phenomenon in which models exacerbate biases or stereotypes present in the training data. In this paper, we study bias amplification in the text-to-image domain using Stable Diffusion by comparing gender ratios in training vs. generated images. We find that the model appears to amplify gender-occupation biases found in the training data (LAION) considerably. However, we discover that amplification can be largely attributed to discrepancies between training captions and model prompts. For example, an inherent difference is that captions from the training data often contain explicit gender information while our prompts do not, which leads to a distribution shift and consequently inflates bias measures. Once we account for distributional differences between texts used for training and generation when evaluating amplification, we observe that amplification decreases drastically. Our findings illustrate the challenges of comparing biases in models and their training data, as well as evaluation more broadly, and highlight how confounding factors can impact analyses.

Original languageEnglish
Title of host publicationLong Papers
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages6367-6384
Number of pages18
ISBN (Electronic)9798891761148
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 - Hybrid, Mexico City, Mexico
Duration: 16 Jun 202421 Jun 2024

Publication series

NameProceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Volume1

Conference

Conference2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Country/TerritoryMexico
CityHybrid, Mexico City
Period16/06/2421/06/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'The Bias Amplification Paradox in Text-to-Image Generation'. Together they form a unique fingerprint.

Cite this