Ternary chalcogenide-based photoelectrochemical cells III. n-CuIn5S8/aqueous polysulfide

Geulah Dagan, Saburo Endo, Gary Hodes, George Sawatzky, David Cahen

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


The photoelectrochemistry of the spinel phase CuIn5S8 in polysulfide electrolyte was studied. A sequence of annealing in S and in vacuum was found to give optimal material for this purpose. The performance of such material could be improved by acid etching and photoelectrochemical etching; both of these treatments deplete the top layer of Cu. Notwithstanding obvious kinetic limitations in polysulfide, the title system shows a negative temperature dependence. The output stability which is inferior to that of n-CuInS2 systems in polysulfide, is limited by increasing dark currents. These may be due to the formation of CuS on the surface. While, for all examples studied, the indirect bandgap around 1.3 eV was observed, the direct gap around 1.5 eV was seen clearly only for photoelectrochemically etched electrodes. It is suggested that the poor photovoltaic performance and mediocre output stability behaviour of CuIn5S8 photoanodes is related to the inability of the material to tolerate significant Cu depletion and to the absence of a homogeneous indium oxide surface layer. This latter finding may be connected with the fact that most of the indium is octahedrally, rather than tetrahedrally coordinated, in contrast to what is the case for the chalcopyrite type disulfide.

Original languageEnglish
Pages (from-to)57-74
Number of pages18
JournalSolar Energy Materials
Issue number1-2
StatePublished - Oct 1984
Externally publishedYes


Dive into the research topics of 'Ternary chalcogenide-based photoelectrochemical cells III. n-CuIn5S8/aqueous polysulfide'. Together they form a unique fingerprint.

Cite this