Abstract
Atrial ablation has been recently utilized to treat atrial fibrillation (AF) by isolation or destruction of arrhythmia drivers. In chronic or persistent AF patients these drivers often consist of one or few rotors at unknown locations, and several ablations are commonly conducted before arrhythmia is terminated. However, the irreversible damage done to the tissue may lead to AF recurrence. We propose an alternative strategy to terminate rotor activity by its attraction into a non 1:1 conducting region. The feasibility of the method was numerically tested in 2D models of chronic AF human atrial tissue. Left-to-right gradients of either acetylcholine (ACh) or potassium conductance were employed to generate regions of 1:1 and non 1:1 conduction, characterized by their dominant frequency (DF) ratios. Spiral waves were established in the 1:1 conducting region and raster scanning was employed using a stimulating probe to attract the spiral wave tip. The probe was then linearly moved towards the boundary between the two regions. Successful attraction of spiral waves to the probe was demonstrated when the probe was <8 mm from the spiral wave tip. Maximal traction velocity without loss of anchoring increased in a non-linear way with increasing values of ACh. Success rate of spiral wave termination was over 90% for regional DF ratios of as low as 1:1.2. Given that normally much higher ratios are measured in physiological atrial tissues, we envision this technique to provide a feasible, safer alternative to ablation procedures performed in persistent AF patients.
Original language | English |
---|---|
Pages (from-to) | 1322-1329 |
Number of pages | 8 |
Journal | Medical Engineering and Physics |
Volume | 38 |
Issue number | 11 |
DOIs | |
State | Published - 1 Nov 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 IPEM
Keywords
- AF termination
- Numerical modeling
- Persistent AF
- Spiral waves