Temporally dependent plasticity: An information theoretic account

Gal Chechik, Naftali Tishby

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The paradigm of Hebbian learning has recently received a novel interpretation with the discovery of synaptic plasticity that depends on the relative timing of pre and post synaptic spikes. This paper derives a temporally dependent learning rule from the basic principle of mutual information maximization and studies its relation to the experimentally observed plasticity. We find that a supervised spike-dependent learning rule sharing similar structure with the experimentally observed plasticity increases mutual information to a stable near optimal level. Moreover, the analysis reveals how the temporal structure of time-dependent learning rules is determined by the temporal filter applied by neurons over their inputs. These results suggest experimental prediction as to the dependency of the learning rule on neuronal biophysical parameters.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 13 - Proceedings of the 2000 Conference, NIPS 2000
PublisherNeural information processing systems foundation
ISBN (Print)0262122413, 9780262122412
StatePublished - 2001
Externally publishedYes
Event14th Annual Neural Information Processing Systems Conference, NIPS 2000 - Denver, CO, United States
Duration: 27 Nov 20002 Dec 2000

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Conference

Conference14th Annual Neural Information Processing Systems Conference, NIPS 2000
Country/TerritoryUnited States
CityDenver, CO
Period27/11/002/12/00

Fingerprint

Dive into the research topics of 'Temporally dependent plasticity: An information theoretic account'. Together they form a unique fingerprint.

Cite this