Abstract
The water hexamer has many low-lying isomers, e.g., ring, book, cage, and prism, shifting from two- to three-dimensional structures. We show that this dimensionality change is accompanied by a drop in the quantum nature of the cluster, as manifested in the red shift of the quantal OH stretching modes as compared with their classical counterparts. We obtain this "nuclear quantum effect"(NQE) as the mean deviation between the OH stretch frequencies from velocity autocorrelation Fourier transforms from classical trajectories on a high-level water potential (MB-pol) as compared with scaled harmonic frequencies from high-level quantum chemistry calculations. With a universal scaling factor, the predicted OH frequencies agree with experiment to a mean absolute deviation ≤10 cm-1, which allows unequivocal isomer assignments. By assuming temperature-independent NQEs, we produce the temperature dependence of the cage isomer OH stretch spectrum below 70 K, where it is the dominant structure. All bands widen and blue-shift with increasing temperature, most conspicuously the reddest mode, which thus constitutes a "vibrational thermometer".
Original language | English |
---|---|
Pages (from-to) | 8201-8208 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry A |
Volume | 124 |
Issue number | 40 |
DOIs | |
State | Published - 8 Oct 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 American Chemical Society.
Funding
This study was supported by Israel Science Foundation grant 722/19. The Fritz Haber Research Center is supported by the Minerva Gesellschaft für die Forschung, München, FRG.
Funders | Funder number |
---|---|
Minerva Gesellschaft für die Forschung | |
Israel Science Foundation | 722/19 |