Tell Me What Is Good About This Property: Leveraging Reviews For Segment-Personalized Image Collection Summarization

Monika Wysoczanska, Moran Beladev, Karen Lastmann Assaraf, Fengjun Wang, Ofri Kleinfeld, Gil Amsalem, Hadas Harush Boker

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations


Image collection summarization techniques aim to present a compact representation of an image gallery through a carefully selected subset of images that captures its semantic content. When it comes to web content, however, the ideal selection can vary based on the user's specific intentions and preferences. This is particularly relevant at, where presenting properties and their visual summaries that align with users' expectations is crucial. To address this challenge, we consider user intentions in the summarization of property visuals by analyzing property reviews and extracting the most significant aspects mentioned by users. By incorporating the insights from reviews in our visual summaries, we enhance the summaries by presenting the relevant content to a user. Moreover, we achieve it without the need for costly annotations. Our experiments, including human perceptual studies, demonstrate the superiority of our cross-modal approach, which we coin as CrossSummarizer over the no-personalization and image-based clustering baselines.

Original languageEnglish
Pages (from-to)22983-22989
Number of pages7
JournalProceedings of the AAAI Conference on Artificial Intelligence
Issue number21
StatePublished - 25 Mar 2024
Externally publishedYes
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Bibliographical note

Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence ( All rights reserved.


Dive into the research topics of 'Tell Me What Is Good About This Property: Leveraging Reviews For Segment-Personalized Image Collection Summarization'. Together they form a unique fingerprint.

Cite this