TY - JOUR
T1 - Targeted NIR Fluorescent Mechanically Interlocked Molecules-Peptide Bioconjugate for Live Cancer Cells Submitochondrial Stimulated Emission Depletion Super-Resolution Microscopy
AU - Kar, Samiran
AU - Das, Rabi Sankar
AU - Bera, Tapas
AU - Das, Shreya
AU - Mukherjee, Ayan
AU - Mondal, Aniruddha
AU - Sengupta, Arunima
AU - Guha, Samit
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025/2/19
Y1 - 2025/2/19
N2 - Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αVβ3 integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP+ functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)2-Mito-MIMs-TPP+ are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy. Water-soluble NIR (RGDS)2-Mito-MIMs-TPP+ is an effective class of MIMs-peptide bioconjugate with promising photophysics; for instance, remarkable photostability and thermal stability, strong and narrow NIR abs/em bands with high quantum yield, ultrabrightness, decent fluorescence lifetime, reasonable stability against cellular nucleophiles, biocompatibility, noncytotoxicity, and dual-targeted living cancer cell submitochondrial imaging ability are all indispensable criteria for targeted super-resolved STED microscopy.
AB - Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αVβ3 integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP+ functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)2-Mito-MIMs-TPP+ are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy. Water-soluble NIR (RGDS)2-Mito-MIMs-TPP+ is an effective class of MIMs-peptide bioconjugate with promising photophysics; for instance, remarkable photostability and thermal stability, strong and narrow NIR abs/em bands with high quantum yield, ultrabrightness, decent fluorescence lifetime, reasonable stability against cellular nucleophiles, biocompatibility, noncytotoxicity, and dual-targeted living cancer cell submitochondrial imaging ability are all indispensable criteria for targeted super-resolved STED microscopy.
UR - http://www.scopus.com/inward/record.url?scp=85214570049&partnerID=8YFLogxK
U2 - 10.1021/acs.bioconjchem.4c00476
DO - 10.1021/acs.bioconjchem.4c00476
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39792079
AN - SCOPUS:85214570049
SN - 1043-1802
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
ER -