Synthesis and characterization of antibody-conjugated gold nanoparticles for biological applications

Adi Anaki, Tamar Sadan, Menachem Motiei, Rachela Popovtzer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Gold nanoparticles (GNPs) have garnered significant attention in biomedical applications, particularly as versatile platforms for drug delivery and targeted therapy. The conjugation of GNPs with antibodies offers a promising strategy to enhance their specificity and efficacy in various therapeutic approaches. In this study, we focus on synthesizing different types of GNPs conjugated with antibodies and investigate the influence of various synthesis methods on nanoparticle characterization. The results demonstrated that different synthesis methods lead to different degrees of antibody conjugation on the GNP surface and to varied efficiency on biosystems. This work has the potential to outline design principles that could positively affect the development of targeted nanotherapeutics for various biomedical applications.

Original languageEnglish
Title of host publicationNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI
EditorsDror Fixler, Sebastian Wachsmann-Hogiu
PublisherSPIE
ISBN (Electronic)9781510669758
DOIs
StatePublished - 2024
EventNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI 2024 - San Francisco, United States
Duration: 28 Jan 2024 → …

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12858
ISSN (Print)1605-7422

Conference

ConferenceNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI 2024
Country/TerritoryUnited States
CitySan Francisco
Period28/01/24 → …

Bibliographical note

Publisher Copyright:
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

Fingerprint

Dive into the research topics of 'Synthesis and characterization of antibody-conjugated gold nanoparticles for biological applications'. Together they form a unique fingerprint.

Cite this