TY - JOUR
T1 - Synergistic effects of nanoarchitecture and oxygen vacancy in nickel molybdate hollow sphere towards a high-performance hybrid supercapacitor
AU - Sivakumar, Periyasamy
AU - Raj, C. Justin
AU - Park, Jeong Won
AU - Jung, Hyun
N1 - Publisher Copyright:
© 2021 John Wiley & Sons Ltd.
PY - 2021/12
Y1 - 2021/12
N2 - The facile design and fabrication of nanoarchitectured binary transition metal oxide electrode materials are essentially required for the advancement of high-performance supercapacitors (SCs). Herein, we prepared an oxygen-vacant NiMoO4 (Ov-NiMoO4) hollow sphere via a simple hydrothermal approach and subsequent heat treatment under an argon atmosphere. In particular, the oxygen vacancy is confirmed by using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman, and differential reflectance spectroscopy (DRS) UV-Vis spectra studies. Furthermore, the generation of the oxygen vacancy could enhance the electrical conductivity and improve Faradaic redox sites. Significantly, the Ov-NiMoO4 hollow sphere depicts a larger specific capacity (Csp) of 496 mA h g−1 at 1 A g−1 than the bare-NiMoO4 (b-NiMoO4; 279 mA h g−1) thermally treated under air. Furthermore, the hybrid SC (HSC) is fabricated based on the Ov-NiMoO4//activated carbon, revealing a high specific capacitance (Cs) of 120 F g−1 and providing a large energy density (ED) of 37.49 W h kg−1 and power density (PD) of 36.61 kW kg−1. Moreover, the HSC shows considerable cyclic stability of ~91.14% over 20 000 cycles. The results divulge that the poor crystallinity and the introduction of oxygen vacancies play a vital role in enhancing the charge-storage capability of the materials.
AB - The facile design and fabrication of nanoarchitectured binary transition metal oxide electrode materials are essentially required for the advancement of high-performance supercapacitors (SCs). Herein, we prepared an oxygen-vacant NiMoO4 (Ov-NiMoO4) hollow sphere via a simple hydrothermal approach and subsequent heat treatment under an argon atmosphere. In particular, the oxygen vacancy is confirmed by using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman, and differential reflectance spectroscopy (DRS) UV-Vis spectra studies. Furthermore, the generation of the oxygen vacancy could enhance the electrical conductivity and improve Faradaic redox sites. Significantly, the Ov-NiMoO4 hollow sphere depicts a larger specific capacity (Csp) of 496 mA h g−1 at 1 A g−1 than the bare-NiMoO4 (b-NiMoO4; 279 mA h g−1) thermally treated under air. Furthermore, the hybrid SC (HSC) is fabricated based on the Ov-NiMoO4//activated carbon, revealing a high specific capacitance (Cs) of 120 F g−1 and providing a large energy density (ED) of 37.49 W h kg−1 and power density (PD) of 36.61 kW kg−1. Moreover, the HSC shows considerable cyclic stability of ~91.14% over 20 000 cycles. The results divulge that the poor crystallinity and the introduction of oxygen vacancies play a vital role in enhancing the charge-storage capability of the materials.
KW - NiMoO
KW - energy storage
KW - hollow sphere
KW - hybrid supercapacitor
KW - oxygen vacancy
UR - http://www.scopus.com/inward/record.url?scp=85112026040&partnerID=8YFLogxK
U2 - 10.1002/er.7156
DO - 10.1002/er.7156
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85112026040
SN - 0363-907X
VL - 45
SP - 21516
EP - 21526
JO - International Journal of Energy Research
JF - International Journal of Energy Research
IS - 15
ER -