Abstract
Although liquid mercury (Hg) has been known since antiquity, the formation of stable solid nano forms of Hg at room temperature has not been reported so far. Here, for the first time, we report a simple sonochemical route to obtain solid mercury nanoparticles, stabilized by reduced graphene oxide at ambient conditions. The as-formed solid Hg nanoparticles were found to exhibit remarkable rhombohedral morphology and crystallinity at room temperature. Extensive characterization using various physicochemical techniques revealed the unique properties of the solid nanoparticles of Hg compared to its bulk liquid metal phase. Furthermore, the solid nature of the Hg nanoparticles was studied electrochemically, revealing distinctive properties. We believe that solid Hg nanoparticles have the potential for important applications in the fields of electroanalytical chemistry and electrocatalysis.
Original language | English |
---|---|
Pages (from-to) | 3226-3238 |
Number of pages | 13 |
Journal | Chemical Science |
Volume | 12 |
Issue number | 9 |
DOIs | |
State | Published - 6 Jan 2021 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry 2021.
Funding
V. K. Harika and T. R. Penki thank Dr Ilana Perelshtein, Dr Merav Tsubery, Dr Yuri Koltypin, Dr Netanel Shpigel for their helpful discussions. B. Loukya and F. L. Deepak acknowledges nancial support by the N2020: Nanotechnology based functional solutions (NORTE-45-2015-02). Research at the Argonne National Laboratory was funded by the U.S. Department of Energy (DOE), Vehicle Technologies Office. This research used resources of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, and was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357, and the Canadian Light Source and its funding partners. The authors thank Drs E. D. Crozier and R. A Gordon at Simon Fraser University Canada for providing the Hg XANES reference data.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-AC02- 06CH11357 |
U.S. Department of Energy | |
Canadian Light Source | |
U.S. Department of Energy | |
Argonne National Laboratory | |
Office of Science |