Abstract
Aside from their fluorescence sensing capabilities, carbon dots doped with heteroatoms show tremendous promise as nanocarriers for medicinal compounds and as antioxidants. We present a method for producing carbon dots from chitosan and lemon extract (CLCDs) using a one-step hydrothermal coupling synthesis. The as-synthesized CLCDs exhibited remarkable colloidal stability, antioxidant behavior, cytocompatibility, and nanocarrier for drug molecules. The nanoparticles was analyzed using advanced techniques such as Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM) to determine the precise composition of their surface. In order to evaluate the drug transport properties of CLCDs, their surfaces were further modified with anticancer drug compounds. The drug release behavior was studied against physiologically simulated fluids and at different pH environments showing better delayed response in acidic condition. The plausible mechanistic pathways have been confirmed after fitting the results into Higuchi, Weibull and Korsmeyer-Peppas models. The goodness of fit was more than 95% for the Korsmeyer-Peppas model, with the release mechanism supported by anomalous transport. Moreover, the radical scavenging activity of CLCDs was also confirmed at low levels (1 mg/mL) which could be inferred > 85% efficacy against mostly employed testing agents (DPPH, ABTS, and hydroxyl radicals). Thus, the prepared CLCDs could be used as suitable nanovector in payload delivery with prominent antioxidant activity and low toxicity against living cell lines. Graphical Abstract: (Figure presented.)
Original language | English |
---|---|
Journal | Journal of Fluorescence |
Early online date | 25 Sep 2024 |
DOIs | |
State | E-pub ahead of print - 25 Sep 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Keywords
- Antioxidant
- Carbon dots
- Drug Delivery
- Fluorescence
- Noncytotoxic
- pH-responsive