TY - JOUR
T1 - Super-Spectral-Resolution Raman spectroscopy using angle-tuning of a Fabry-Pérot etalon with application to diamond characterization
AU - Amiel, Yishai
AU - Nedvedski, Romi
AU - Mandelbaum, Yaakov
AU - Tischler, Yaakov R.
AU - Tischler, Hadass
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/15
Y1 - 2025/1/15
N2 - Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry–Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup. A monolithically coated F-P etalon structure, only 1.686 mm in thickness, was mounted onto an angle-tunable motorized stage, and Raman spectra were automatically acquired for many different angles of the etalon. Using a low-resolution grating of 150 g/mm by itself, without the F-P etalon, we obtained a best-case regular Raman spectral linewidth of 44 cm−1 for the characteristic Raman peak from a diamond sample. When we applied the SSR-RS technique to diamond, we obtained a super-spectral resolution peak that was 27x narrower, namely 1.63 cm−1, and a Raman shift of 1331.3 cm−1. To baseline SSR-RS, we applied the super-spectral-resolution method to extract the linewidth and peak wavelength of the laser excitation itself and obtained a laser linewidth of better than 0.014 cm−1, with a laser wavelength centered at 531.962 nm, close to the stated wavelength of 532 nm. This extracted laser linewidth is 3300x times narrower compared to its measured linewidth of 46 cm−1. Thus, our work suggests that SSR-RS can be very generally applied to greatly improve the resolution and precision of Raman instrumentation, and potentially lower the cost of obtaining high-resolution Raman spectroscopic capabilities.
AB - Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry–Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup. A monolithically coated F-P etalon structure, only 1.686 mm in thickness, was mounted onto an angle-tunable motorized stage, and Raman spectra were automatically acquired for many different angles of the etalon. Using a low-resolution grating of 150 g/mm by itself, without the F-P etalon, we obtained a best-case regular Raman spectral linewidth of 44 cm−1 for the characteristic Raman peak from a diamond sample. When we applied the SSR-RS technique to diamond, we obtained a super-spectral resolution peak that was 27x narrower, namely 1.63 cm−1, and a Raman shift of 1331.3 cm−1. To baseline SSR-RS, we applied the super-spectral-resolution method to extract the linewidth and peak wavelength of the laser excitation itself and obtained a laser linewidth of better than 0.014 cm−1, with a laser wavelength centered at 531.962 nm, close to the stated wavelength of 532 nm. This extracted laser linewidth is 3300x times narrower compared to its measured linewidth of 46 cm−1. Thus, our work suggests that SSR-RS can be very generally applied to greatly improve the resolution and precision of Raman instrumentation, and potentially lower the cost of obtaining high-resolution Raman spectroscopic capabilities.
KW - Diamond
KW - Fabry-Perot Etalon
KW - Micro-Raman
KW - Photoluminescence
KW - Raman
KW - Super-Resolution
UR - http://www.scopus.com/inward/record.url?scp=85202783661&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39217953
AN - SCOPUS:85202783661
SN - 1386-1425
VL - 325
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 125038
ER -