Summand absorbing submodules of a module over a semiring

Zur Izhakian, Manfred Knebusch, Louis Rowen

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

An R-module V over a semiring R lacks zero sums (LZS) if x+y=0 implies x=y=0. More generally, we call a submodule W of V “summand absorbing” (SA) in V if ∀x,y∈V:x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings, as well as modules over semirings of sums of squares. We explore the lattice of finite sums of SA-submodules, obtaining analogs of the Jordan–Hölder theorem, the noetherian theory, and the lattice-theoretic Krull dimension. We pay special attention to finitely generated SA-submodules, and describe their explicit generation.

Original languageEnglish
Pages (from-to)3262-3294
Number of pages33
JournalJournal of Pure and Applied Algebra
Volume223
Issue number8
DOIs
StatePublished - Aug 2019

Bibliographical note

Publisher Copyright:
© 2018 Elsevier B.V.

Keywords

  • Direct sum decomposition
  • Indecomposable
  • Lacking zero sums
  • Projective (semi)module
  • Semiring
  • Upper bound monoid

Fingerprint

Dive into the research topics of 'Summand absorbing submodules of a module over a semiring'. Together they form a unique fingerprint.

Cite this