Subvisible retinal laser therapy: Titration algorithm and tissue response

Daniel Lavinsky, Christopher Sramek, Jenny Wang, Philip Huie, Roopa Dalal, Yossi Mandel, Daniel Palanker

Research output: Contribution to journalArticlepeer-review

98 Scopus citations

Abstract

Purpose: Laser therapy for diabetic macular edema and other retinal diseases has been used within a wide range of laser settings: from intense burns to nondamaging exposures. However, there has been no algorithm for laser dosimetry that could determine laser parameters yielding a predictable extent of tissue damage. This multimodal imaging and structural correlation study aimed to verify and calibrate a computational model-based titration algorithm for predictable laser dosimetry ranging from nondamaging to intense coagulative tissue effects. Methods: Endpoint Management, an algorithm based on a computational model of retinal photothermal damage, was used to set laser parameters for various levels of tissue effect. The algorithm adjusts both power and pulse duration to vary the expected level of thermal damage at different percentages of a reference titration energy dose. Experimental verification was conducted in Dutch Belted rabbits using a PASCAL Streamline 577 laser system. Titration was performed by adjusting laser power to produce a barely visible lesion at 20 ms pulse duration, which is defined as the nominal (100%) energy level. Tissue effects were then determined for energy levels of 170, 120, 100, 75, 50, and 30% of the nominal energy at 1 hour and 3, 7, 30, and 60 days after treatment. In vivo imaging included fundus autofluorescence, fluorescein angiography, and spectral-domain optical coherence tomography. Morphologic changes in tissue were analyzed using light microscopy, as well as scanning and transmission electron microscopy. Results: One hundred and seventy percent and 120% levels corresponded to moderate and light burns, respectively, with damage to retinal pigment epithelium, photoreceptors, and at highest settings, to the inner retina. 50% to 75% lesions were typically subvisible ophthalmoscopically but detectable with fluorescein angiography and optical coherence tomography. Histology in these lesions demonstrated some selective damage to retinal pigment epithelium and photoreceptors. The 30% to 50% lesions were invisible with in vivo multimodal imaging, and damage was limited primarily to retinal pigment epithelium, visible best with scanning electron microscopy. Over time, photoreceptors shifted into the coagulated zone, reestablishing normal retinal anatomy in lesions ≤100%, as seen in optical coherence tomography and light microscopy. Transmission electron microscopy at 2 months demonstrated restoration of synapses between shifted-in photoreceptors and bipolar cells in these lesions. Retinal pigment epithelium monolayer restored its continuity after 1 week in all lesions. No damage could be seen <30% level. Conclusion: A retinal laser dosimetry protocol based on the Endpoint Management algorithm provides reproducible changes in retinal morphology in animals with various levels of pigmentation. This algorithm opens doors to clinical trials of well-defined subvisible and nondestructive regimes of retinal therapy, especially important for treatment of macular disorders.

Original languageEnglish
Pages (from-to)87-97
Number of pages11
JournalRetina
Volume34
Issue number1
DOIs
StatePublished - Jan 2014
Externally publishedYes

Keywords

  • Computational model
  • Imaging
  • Laser photocoagulation
  • Photostimulation

Fingerprint

Dive into the research topics of 'Subvisible retinal laser therapy: Titration algorithm and tissue response'. Together they form a unique fingerprint.

Cite this