TY - JOUR
T1 - Study of the lithium-rich integrated compound xLi2MnO 3 · (1-x)Li[MnyNizCow]O 2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells
AU - Amalraj, Francis
AU - Talianker, Michael
AU - Markovsky, Boris
AU - Sharon, Daniel
AU - Burlaka, Luba
AU - Shafir, Gilead
AU - Zinigrad, Ella
AU - Haik, Ortal
AU - Aurbach, Doron
AU - Lampert, Jordan
AU - Schulz-Dobrick, Martin
AU - Garsuch, Arnd
PY - 2013
Y1 - 2013
N2 - We investigated the structural characteristics of Li-rich xLi 2MnO3 · (1-x)Li[MnyNizCo w]O2 cathode material (x around 0.5, y:z:w around 2:2:1) and its electrochemical performance in lithium cells at 30 and 60°C. It was established that nanoparticles of the xLi2MnO3 · (1-x)Li[MnyNizCow]O2 compound are intergrown on the nano-scale and are built of thin plates of 40-50 Å. We demonstrated that xLi2MnO3 · (1-x)Li[Mn yNizCow]O2 electrodes exhibited at 60°C high capacities of ̃270 and ̃220 mAh/g at 1C and 2C rates, respectively. They can be cycled effectively at 30 and 60°C providing capacity ̃250 mAh/g in the initial cycles, but it fades upon prolonged cycling due, to some extent, to increasing the electrode impedance (charge-transfer resistance) especially at the elevated temperature. The effective chemical diffusion coefficient of Li+ in these electrodes measured during charge to 4.7 V by potentiostatic intermittent titration technique (PITT) was found to be ̃10-10 cm2/s. From convergent beam electron diffraction and Raman spectroscopy studies we established, for the first time, that partial structural transition from layered-type to spinel-type ordering in xLi2MnO3 · (1-x)Li[MnyNi zCow]O2 electrodes occurred in the initial charge to 4.7 V and even at the early stages of charging at 4.1 V-4.4 V. The thermal behavior of the xLi2MnO3 · (1-x)Li[Mn yNizCow]O2 material and electrodes are also discussed.
AB - We investigated the structural characteristics of Li-rich xLi 2MnO3 · (1-x)Li[MnyNizCo w]O2 cathode material (x around 0.5, y:z:w around 2:2:1) and its electrochemical performance in lithium cells at 30 and 60°C. It was established that nanoparticles of the xLi2MnO3 · (1-x)Li[MnyNizCow]O2 compound are intergrown on the nano-scale and are built of thin plates of 40-50 Å. We demonstrated that xLi2MnO3 · (1-x)Li[Mn yNizCow]O2 electrodes exhibited at 60°C high capacities of ̃270 and ̃220 mAh/g at 1C and 2C rates, respectively. They can be cycled effectively at 30 and 60°C providing capacity ̃250 mAh/g in the initial cycles, but it fades upon prolonged cycling due, to some extent, to increasing the electrode impedance (charge-transfer resistance) especially at the elevated temperature. The effective chemical diffusion coefficient of Li+ in these electrodes measured during charge to 4.7 V by potentiostatic intermittent titration technique (PITT) was found to be ̃10-10 cm2/s. From convergent beam electron diffraction and Raman spectroscopy studies we established, for the first time, that partial structural transition from layered-type to spinel-type ordering in xLi2MnO3 · (1-x)Li[MnyNi zCow]O2 electrodes occurred in the initial charge to 4.7 V and even at the early stages of charging at 4.1 V-4.4 V. The thermal behavior of the xLi2MnO3 · (1-x)Li[Mn yNizCow]O2 material and electrodes are also discussed.
UR - http://www.scopus.com/inward/record.url?scp=84875477584&partnerID=8YFLogxK
U2 - 10.1149/2.070302jes
DO - 10.1149/2.070302jes
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84875477584
SN - 0013-4651
VL - 160
SP - A324-A337
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 2
ER -