Stability of directed Min-Max optimal paths

E. Perlsman, S. Havlin

Research output: Contribution to journalArticlepeer-review


The stability of directed Min-Max optimal paths in cases of change in the random media is studied. Using analytical arguments it is shown that when small perturbations ε are applied to the weights of the bonds of the lattice, the probability that the new Min-Max optimal path is different from the original Min-Max optimal path is proportional to t1/νε, wheret is the size of the lattice, and ν|| is the longitudinal correlation exponent of the directed percolation model. It is also shown that in a lattice whose bonds are assigned with weights which are near the strong disorder limit, the probability that the directed polymer optimal path is different from the optimal Min-Max path is proportional to t2/ν||/k2, where k is the strength of the disorder. These results are supported by numerical simulations.

Original languageEnglish
Article number20003
Issue number2
StatePublished - 1 Jan 2007


Dive into the research topics of 'Stability of directed Min-Max optimal paths'. Together they form a unique fingerprint.

Cite this