splitSVM: Fast, Space-efficient, non-Heuristic, polynomial kernel computation for NLP applications

Yoav Goldberg, Michael Elhadad

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

69 Scopus citations

Abstract

We present a fast, space efficient and nonheuristic method for calculating the decision function of polynomial kernel classifiers for NLP applications. We apply the method to the MaltParser system, resulting in a Java parser that parses over 50 sentences per second on modest hardware without loss of accuracy (a 30 time speedup over existing methods). The method implementation is available as the open-source splitSVM Java library.

Original languageEnglish
Title of host publicationACL-08
Subtitle of host publicationHLT - 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference
Pages237-240
Number of pages4
StatePublished - 2008
Externally publishedYes
Event46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-08: HLT - Columbus, OH, United States
Duration: 15 Jun 200820 Jun 2008

Publication series

NameACL-08: HLT - 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-08: HLT
Country/TerritoryUnited States
CityColumbus, OH
Period15/06/0820/06/08

Fingerprint

Dive into the research topics of 'splitSVM: Fast, Space-efficient, non-Heuristic, polynomial kernel computation for NLP applications'. Together they form a unique fingerprint.

Cite this