Abstract
Speech derverberation using a single microphone is addressed in this paper. Motivated by the recent success of the fully convolutional networks (FCN) in many image processing applications, we investigate their applicability to enhance the speech signal represented by short-time Fourier transform (STFT) images. We present two variations: a “U-Net” which is an encoder-decoder network with skip connections and a generative adversarial network (GAN) with U-Net as generator, which yields a more intuitive cost function for training. To evaluate our method we used the data from the REVERB challenge, and compared our results to other methods under the same conditions. We have found that our method outperforms the competing methods in most cases.
Original language | English |
---|---|
Title of host publication | 2018 26th European Signal Processing Conference, EUSIPCO 2018 |
Publisher | European Signal Processing Conference, EUSIPCO |
Pages | 390-394 |
Number of pages | 5 |
ISBN (Electronic) | 9789082797015 |
DOIs | |
State | Published - 29 Nov 2018 |
Event | 26th European Signal Processing Conference, EUSIPCO 2018 - Rome, Italy Duration: 3 Sep 2018 → 7 Sep 2018 |
Publication series
Name | European Signal Processing Conference |
---|---|
Volume | 2018-September |
ISSN (Print) | 2219-5491 |
Conference
Conference | 26th European Signal Processing Conference, EUSIPCO 2018 |
---|---|
Country/Territory | Italy |
City | Rome |
Period | 3/09/18 → 7/09/18 |
Bibliographical note
Publisher Copyright:© EURASIP 2018.