Abstract
We provide in this paper asymptotic theory for a spatial autoregressive model (SAR, henceforth) in which the spatial coefficient, λ, is allowed to be less than or equal to unity, as well as consistent with a local to unit root (LUR) model and of the moderate integration (MI) from unity type, and the spatial weights are allowed to be similarity-based and data driven. Other special cases of our setting include the random walk, a model in which all the weights are equal, the standard SAR model in which λ<1 and the similarity based autoregression in which λ=1 and data do not display a natural order. As the norming rates for the asymptotic theory are very different in the λ<1 - compared with the λ=1 and LUR cases, we resort to random norming that treats all cases in a uniform manner. It turns out that standard CLT results prevail in a large class of models in which the infinity norm of the inverse of the weighting structure that characterizes the reduced-form process is Onγ, γ∈[0,1), and is non-standard in the case γ=1. We use a shifted profile likelihood to obtain results which are valid for all cases. A small simulation experiment supports our findings and the usefulness of our model is illustrated with an empirical application of the Boston housing data set in which the estimate of λ appeared to be very close to unity.
Original language | English |
---|---|
Pages (from-to) | 1770-1798 |
Number of pages | 29 |
Journal | Journal of Econometrics |
Volume | 235 |
Issue number | 2 |
DOIs | |
State | Published - Aug 2023 |
Bibliographical note
Publisher Copyright:© 2023 Elsevier B.V.
Funding
We are grateful to the Co-Editor, an Associate Editor and two anonymous referees for helpful comments that have substantially improved the paper. Offer Lieberman gratefully acknowledges support from Israel Science Foundation grant No. 1443-20 .
Funders | Funder number |
---|---|
Israel Science Foundation | 1443-20 |
Keywords
- Quasi-maximum-likelihood
- Similarity function
- Spatial autoregression
- Weight matrix