Abstract
Understanding fundamental limits of the various technologies suggested for future 5G and beyond cellular systems is crucial for developing efficient state-of-the-art designs. A leading technology of major interest is non-orthogonal multiple-access (NOMA). In this paper, we derive an explicit rigorous closed-form analytical expression for the optimum spectral efficiency in the large-system limit of regular sparse NOMA, where only a fixed and finite number of orthogonal resources are allocated to any designated user, and vice versa. The basic Verdú-Shamai formula for (dense) randomly-spread code-division multiple-access (RS-CDMA) turns out to coincide with the limit of the derived expression, when the number of orthogonal resources per user grows large. Furthermore, regular sparse NOMA is rigorously shown to be spectrally more efficient than RS-CDMA across the entire system load range. It may therefore serve as an efficient means for reducing the throughput gap to orthogonal transmission in the underloaded regime, and to the ultimate Cover-Wyner bound in overloaded systems. The results analytically reinforce preliminary conclusions in [1], which mostly relied on heuristics and numerical observations. The spectral efficiency is also derived in closed form for the sub-optimal linear minimum-mean-square-error (LMMSE) receiver, which again extends the corresponding Verdti-Shamai LMMSE formula to regular sparse NOMA.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Symposium on Information Theory, ISIT 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1106-1110 |
Number of pages | 5 |
ISBN (Print) | 9781538647806 |
DOIs | |
State | Published - 15 Aug 2018 |
Event | 2018 IEEE International Symposium on Information Theory, ISIT 2018 - Vail, United States Duration: 17 Jun 2018 → 22 Jun 2018 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2018-June |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2018 IEEE International Symposium on Information Theory, ISIT 2018 |
---|---|
Country/Territory | United States |
City | Vail |
Period | 17/06/18 → 22/06/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
Funding
ACKNOWLEDGMENT The work of B. M. Zaidel and S. Shamai was supported by the Heron Consortium of the Israel Innovation Authority.
Funders | Funder number |
---|---|
Heron Consortium of the Israel Innovation Authority |