Source tracking using moving microphone arrays for robot audition

Christine Evers, Yuval Dorfan, Sharon Gannot, Patrick A. Naylor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Scopus citations

Abstract

Intuitive spoken dialogues are a prerequisite for human-robot interaction. In many practical situations, robots must be able to identify and focus on sources of interest in the presence of interfering speakers. Techniques such as spatial filtering and blind source separation are therefore often used, but rely on accurate knowledge of the source location. In practice, sound emitted in enclosed environments is subject to reverberation and noise. Hence, sound source localization must be robust to both diffuse noise due to late reverberation, as well as spurious detections due to early reflections. For improved robustness against reverberation, this paper proposes a novel approach for sound source tracking that constructively exploits the spatial diversity of a microphone array installed in a moving robot. In previous work, we developed speaker localization approaches using expectation-maximization (EM) approaches and using Bayesian approaches. In this paper we propose to combine the EM and Bayesian approach in one framework for improved robustness against reverberation and noise.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6145-6149
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - 16 Jun 2017
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Keywords

  • Acoustic Signal Processing
  • Bayesian estimation
  • Expectation-Maximization
  • Particle filter
  • Sound Source Tracking

Fingerprint

Dive into the research topics of 'Source tracking using moving microphone arrays for robot audition'. Together they form a unique fingerprint.

Cite this