Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections

Aleksandra Ivanova, Kristina Ivanova, Ilana Perelshtein, Aharon Gedanken, Katerina Todorova, Rositsa Milcheva, Petar Dimitrov, Teodora Popova, Tzanko Tzanov

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Catheter-associated urinary tract infections (CAUTIs), caused by biofilms, are the most frequent health-care associated infections. Novel antibiofilm coatings are needed to increase the urinary catheters' life-span, decrease the prevalence of CAUTIs and reduce the development of antimicrobial resistance. Herein, antibacterial zinc oxide nanoparticles (ZnO NPs) were decorated with a biofilm matrix-degrading enzyme amylase (AM) and simultaneously deposited onto silicone urinary catheters in a one-step sonochemical process. The obtained nano-enabled coatings inhibited the biofilm formation of Escherichia coli and Staphylococcus aureus by 80% and 60%, respectively, for up to 7 days in vitro in a model of catheterized bladder with recirculation of artificial urine due to the complementary mode of antibacterial and antibiofilm action provided by the NPs and the enzyme. Over this period, the coatings did not induce toxicity to mammalian cell lines. In vivo, the nano-engineered ZnO@AM coated catheters demonstrated lower incidence of bacteriuria and prevent the early onset of CAUTIs in a rabbit model, compared to the animals treated with pristine silicone devices. The nano-functionalization of catheters with hybrid ZnO@AM coatings appears as a promising strategy for prevention and control of CAUTIs in the clinic.

Original languageEnglish
Article number112518
JournalMaterials Science and Engineering C
Volume131
DOIs
StatePublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021 The Authors

Keywords

  • Amylase
  • Bacterial infections prevention
  • Biofilm inhibition
  • Sonochemistry
  • Zinc oxide nanoparticles

Fingerprint

Dive into the research topics of 'Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections'. Together they form a unique fingerprint.

Cite this