Sonochemical One-Step Synthesis of Polymer-Capped Metal Oxide Nanocolloids: Antibacterial Activity and Cytotoxicity

Anjani P. Nagvenkar, Ilana Perelshtein, Ylenia Piunno, Paride Mantecca, Aharon Gedanken

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Most antibacterial agents demand their action in the form of a liquid for compatibility and ease of use in biosystems, which are mainly composed of biological fluids. Controlling the colloidal stability of metal oxide nanocolloids, in parallel with minimizing the effect of using a large amount of surfactant on their biocidal activity and cytotoxicity, remains a challenge. Here, we address the stability of nanocolloids of ZnO and CuO in the presence of polymer surfactants and the influence of the surface capping on their antibacterial activity and cytotoxicity. The metal oxide nanoparticles (NPs) were synthesized sonochemically in a single step and tested against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus to validate their biocidal efficacy. Cytotoxicity studies were performed on human alveolar epithelial cells. Polyethylene glycol- and polyvinyl alcohol-capped NPs are observed to show the minimum cytotoxicity whereas polyethylene imine-capped and pristine metal oxide NPs are toxic to the mammalian cells. The cytotoxic and antibacterial properties of the stable nanocolloids displayed an inverse relation, highlighting the role and significance of the polymer capping. The nontoxic biocidal nanocolloids showed an effective antibacterial efficacy of 99.9% in 2 h.

Original languageEnglish
Pages (from-to)13631-13639
Number of pages9
JournalACS Omega
Volume4
Issue number9
DOIs
StatePublished - 27 Aug 2019

Bibliographical note

Publisher Copyright:
Copyright © 2019 American Chemical Society.

Funding

FundersFunder number
Horizon 2020 Framework Programme720851

    Fingerprint

    Dive into the research topics of 'Sonochemical One-Step Synthesis of Polymer-Capped Metal Oxide Nanocolloids: Antibacterial Activity and Cytotoxicity'. Together they form a unique fingerprint.

    Cite this